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Abstract� This paper presents results in two mutually complementary areas: distributed immunological information 

assurance and a new signature matching technique based upon Kolmogorov Complexity. This paper introduces a 

distributed model for security based on biological paradigms of Epidemiology and Immunology. In this model each node in 

the network has an immune system that identifies and destroys pathogens in the incoming network traffic as well as files 

resident on the node. The network nodes present a collective defense to the pathogens by working symbiotically and sharing 

pathogen information with each other. Each node compiles a list of pathogens that are perceived as threats by using 

information provided from all the nodes in the network. The signatures for these pathogens are incorporated into the 

detector population of the immune systems to increase the probability of detection. Critical to the success of this system is 

the detection scheme, which should not only be accurate but also efficient. Three separate schemes for detecting pathogens 

are examined, namely, Contiguous string matching, Hamming Distance, and Kolmogorov Complexity. This work provides a 

model of the system and examines the efficiency of different detection schemes. A simulation model is built to study the 

sensitivity of model parameters, such as signature length, sampling rate, network topology, etc. to detection of pathogens.  

 
Index Terms� Immunology, Epidemiology, Information Assurance, Kolmogorov Complexity, Signature Matching. 

I. INTRODUCTION  

Advances in computer security are emerging continuously yet, the number of computer crimes continue to rise 

unabated. The government, industry, and home users alike are taking serious steps to make computers and networks 
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more secure, however, hackers seem to be unaffected by these measures and have unfettered access to any computer 

and data on the Internet. Viruses spread rampantly across networks in spite of the presence of Intrusion Detection 

Systems (IDS) because small changes to viruses render the IDS systems ineffective. Perpetrating computer crimes is 

no longer the domain of the perceived computer geniuses but of average users who use recipes and manuals from the 

Internet and follow simple steps to perpetrate these attacks. According to a CERT report the number of reported 

crimes has gone up from 6 in 1998 to over 82,000 in 2002 [11].  

It is not clear whether the security has progressively worsened over time or if the increased crime rates are a 

function of increased usage, awareness and reporting. It is clear, however, that the stakes in computer security are 

rising steadily as commerce grows on the Internet. A Jupiter Media Metrix [35] report claims that online retail sales 

(B2C) will reach $104 billion in 2005 and $130 billion by 2006, up from $34 billion in 2001.  According to a 

Gartner Group report [34], B2B commerce will grow from $919 billion dollars in 2002 to 8.3 trillion dollars in year 

2005. Some of the recent attacks on the Internet [14] have caused billions of dollars in losses, associated with loss of 

integrity of the data, cost of system reconfiguration, as well as loss of essential computing services for extended 

periods of time. Once an intrusion is detected significant resources are spent just in determining the source of 

intrusion, identifying systems that have been impacted and in patching all the systems to prevent future attacks. After 

each virus attack the cleanup activities include checking integrity of systems and data, patching operating system (or 

software) and updating virus definitions in detection systems.  

Clearly, current measures have been ineffective in controlling the spread of viruses and in controlling intrusion as 

evidenced by the increasing rate of computer crime. Most of the existing security measures have been preventive, 

with a focus on perimeter defenses of the computer system. A proactive security model that focuses on identifying 

and neutralizing pathogens that invade a system is suggested to complement perimeter defenses. This paper presents 

a security model that takes inspiration from the biological paradigm of Immunology and creates a reactive computer 

security system that detects and neutralizes pathogens invading the system. This is certainly not the first security 

model based on an immunological paradigm. Kephart [40] and Forrest [23] have done seminal work on the use of 

immunological paradigms for computer security. Since then a large body of knowledge has emerged in the design of 

Artificial Immune Systems (AIS). Several applications have been developed using Artificial Immune Systems, such 

as, fraud detection, computer security, and robotic control. Some of these will be discussed in Section 3. The 

applications, though conceptually elegant, have not been practical to deploy on a large scale.  
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This paper discusses the extant literature on immunological paradigms for computer security and addresses 

fundamental limitations of these systems that render them intractable to practical implementation. Critical to the 

success of Immune System-based security models is a scheme for representation and detection of pathogens, since it 

strongly influences the computational complexity of the system. This paper explores different schemes for 

representing pathogen signatures and their efficacy in detecting pathogens. The investigation focuses on the 

comparison of traditional string matching techniques (i.e., hamming distance, contiguous string match) with the use 

of a novel matching technique, first proposed in this paper, based upon Kolmogorov Complexity. This paper 

proposes the concept of collective defense where nodes on the network share information and resources with their 

neighbors to provide a collective defense against pathogens, thereby relieving the computational burden on 

individual nodes. Concepts from Epidemiology and the Theory of Random Graphs are used to explore the 

conceptual underpinnings of the mechanism of collective defense. Kolmogorov Complexity has been proposed as a 

pervasive metric that transcends both node and network level defenses in the proposed model.  

The paper is organized as follows. Section II discusses the biological immune system and the analogy to computer 

immune systems. Section III discusses relevant literature on Immunology, Epidemiology, Random Graphs, and 

Kolmogorov Complexity. Section IV presents the architecture of the immune system incorporating collective 

defense.  In section V, a mathematical model for performance of the immune system is presented. In section VI, 

multiple schemes for the representation of virus signatures and pathogen detection are presented and compared using 

analytic and simulation based results. The paper concludes with a discussion of the findings and plans for future 

research.  

II. IMMUNE SYSTEM PARADIGM 

The role of the human immune system is to protect our body from pathogens, such as, viruses, bacteria, microbes, 

etc�. The immune system consists of different kinds of cells, which operate autonomously and interact with each 

other to create complex chains of events leading to the destruction of pathogens. At a high level, cells can be 

categorized into two groups: detectors and effectors. The role of detectors is to identify pathogens and the role of 

effectors is to neutralize pathogens.  

There are two kinds of immune responses evoked by the immune system: innate response and specific response. 

The innate immune response is the natural resistance of the body to foreign antigens and is non-specific towards 
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invaders in the body. During this response, a specialized class of cells called phagocytes (macrophages and 

neutrophils) is used. These specialized cells, which have surface receptors that match many common bacteria, have 

remained unchanged through the evolutionary period [36]. This system reacts nearly instantly on detection of 

pathogens in the body, however, it is incapable of recognizing viruses and bacteria that mutate and evolve. 

The innate immune response is complemented by the adaptive immune response, in which antibodies are 

generated to specific pathogens that are not recognized by the phagocytes. The adaptive response system uses 

lymphocytes, which unlike phagocytes that contain receptors for multiple strains have receptors for a specific strain. 

Lymphocytes are produced in the bone marrow, which generates variants of genes that encode the receptor 

molecules and mature in the thymus. When an antigen is encountered, it is presented to the lymphocytes in the 

lymphatic system. The lymphocytes that match proliferate by cloning and subsequently differentiate into B-cells that 

are used for generating antibodies and T-cells that destroy infected cells and activate other cells in the immune 

system. Most cells that proliferate to fight pathogens die; a few are converted into memory cells that retain the 

signature of the pathogen that was matched. This leads to a rapid response the next time a similar pathogen is 

encountered; this is the principle used in vaccinations and inoculations. Over a long period of disuse these memory 

cells die, as evidenced by weakening immunity to vaccinations over time. Lymphocytes have a fixed lifetime and if 

during this period they do not match a pathogen, they automatically die.  

The key to the functioning of the immune system is the detection mechanism that is employed in the immune 

system. Recognition is based on pattern matching between complimentary protein structures of the antigen and the 

detector. The primary purpose of the genetic mechanism in the thymus and bone marrow is to generate proteins with 

different physical structures. The immune system recognizes pathogens by matching protein structure of the 

pathogen with that of the receptor. If the receptor of the antigen and the detector fit together like a three-dimensional 

jigsaw puzzle, a match is found.  

A fundamental problem with the detection mechanism of the immune system is the computational complexity. For 

example, if there are 50 different attributes with four different values, over six million different detectors are required 

to cover the entire search space. The virus structures that can arise due to different protein configurations are 

virtually infinite. In spite of high efficiency in creating detectors and pattern matching at the molecular level, the 

problem of maintaining a detector for each possible pathogen protein structure is computationally infeasible. The 

human immune mechanism solves this problem by using generalizations in matching where some features of the 
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structure are ignored during the match. This is called specificity of match; the more the features are ignored during 

the match, the lower the specificity. The lower the specificity, the fewer is the number of detectors that are required 

for matching a population of pathogens and the more non-specific is the response. An explanation of specificity is 

elegantly described in John Holland�s description of the classifier systems [29]. If d is the detector signature and p is 

the pathogen signature, such that, p e {0, 1} and d e {0, 1, *} where * is the don�t-care condition. The detector 

matches the pathogen when p and d contain a complimentary bit sequence, and specificity is defined as the number 

(or ratio) of the non-* values during the match. For instance p=11101010, d=11101010 shows a match with 

specificity of 1, while p=11101010, d = 11****10 shows a match with specificity of four. If the detector d = 

******** then the specificity of the match would be zero and the detector would match any pathogen.  

To cover the space of all possible non-self proteins the immune system uses detectors with low specificity. This 

enables the immune system to detect most pathogens with only a few detectors; however, it results in poor 

discrimination ability and a weak response to the pathogen intrusion. The immune system counters this problem by 

employing a process called affinity maturation that results in creation of detectors (B-Cells) with high specificity 

targeted towards the specific pathogens that are encountered. During the affinity maturation process, a B-cell that is 

activated clones itself using a high mutation rate (somatic hypermutation) to create a population of detectors that 

match the pathogen but maintain sufficient diversity to evolve more specific detectors. The cloned detectors are 

themselves activated and cloned with the cloning rate proportional to the fitness of the detector. The fitness function 

of the detectors is the affinity for the specific pathogen. The detectors thus compete with each other with the fitter 

detectors proliferating faster and creating more specific detectors. As a result of affinity maturation a very generic 

response is thus quickly transformed into a specific response. 

Another problem that arises in the immune system is that since the cells of the human body are made of the same 

protein building blocks as the pathogens, the immune system not only has to identify foreign proteins but also needs 

to distinguish between legitimate cells that belong to the body from pathogens that invade the body. This process is 

called self/non-self discrimination. The immune system enforces this discrimination by exposing nascent 

lymphocytes to the protein structures of the legitimate cells in the human body and destroying those lymphocytes 

(clonal deletion) that match protein structures of legitimate cells in the human body, prior to activating them for 

potential exposure to pathogens. The rest of the lymphocytes are retained for a specific time period during which 
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they have a chance of matching a pathogen and becoming permanent. Whenever this mechanism fails and the 

lymphatic system fails to destroy a lymphocyte that matches a self-cell, autoimmune diseases can ensue.  

The T-Cells mature in the thymus through which most self-proteins circulate and are thus sensitized to the self-

proteins of the body via clonal deletion. The B-Cells, though sensitized to self-proteins themselves, may generate 

clones during the affinity maturation process that are not tolerant to the self-proteins of the body. To ensure tolerance 

of B-cells to the self-proteins, costimulation is employed by the immune system. Thus, in order to be activated, B-

Cells must receive a signal from two separate sources. The first signal occurs when the receptors of the B-cells match 

the protein structure of the foreign protein. The helper T-cells deliver the second signal when they recognize the 

proteins in the pathogen that was intercepted by the B-cell. In order to get a response from the helper T-cells, the B-

cells ingest the pathogen and dissect it into protein fragments that are presented to the T-cells. The T-cells match the 

fragments with their receptors and if a match occurs send a signal to the B-cell to trigger a response. 

Undoubtedly there is a strong analogy between a biological immune system and a computer immune system. A 

study of the human immune system reveals unique characteristics that can be abstracted for use in an artificial 

immune system, viz., self-organization, learning, memory, clonal selection, and pattern recognition. The computer 

immune systems proposed in the literature have tried to mimic the biological immune system very closely. This 

paper, on the other hand, focuses on specific impediments in the use of Immune Systems for creating computer 

security applications.  

A major characteristic of biological immune systems is discrimination between self and non-self. This is critical to 

the human immune system, a closed system. This concept is less relevant to computer security systems that need to 

dynamically interact with other computers and devices on the network. The definition of self is not static, since 

network composition is changing continuously, with new nodes entering the network and existing nodes leaving the 

network. Secondly, even if a static definition of self can be defined, the system may not be secure because a large 

number of attacks are perpetrated by trusted insiders rather than by outsiders. Finally, a large volume of network 

traffic from the Internet is potentially useful data, discarding all that data degrades the service quality of computer 

systems.  

The first major impediment of currently proposed immune systems is the assumption that all data entering the 

network (or node) that is non-self is malicious. The second impediment to the creation of secure immune systems is 

the problem of computational complexity. The number of detectors that are required to match even a modest number 
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of features is very large and increases exponentially as the number of features increase. Forrest [21] use a 49-bit 

string composed of the source IP-address, destination IP-address and the destination port as the signature of the 

packets. To uniquely match all the possible 49-bit binary strings would require 249 different detectors. Even ignoring 

half the bits would require 225 different detectors. This paper addresses the issue using two different approaches. The 

first approach is based on the premise that immune system needs to make informed choices so as to create fewer 

detectors with a higher probability of matching. The second approach is based on the premise that a more 

fundamental metric for classification of data be created, such as Kolmogorov Complexity.  

This paper also explores the concept of collective network defense to reduce computational burden on individual 

nodes. In this approach immune systems of different nodes work symbiotically and exchange pathogen information 

based upon their own detection schemes thereby assisting other nodes better select detectors to activate. The entire 

network can collectively pose a formidable barrier especially if the communication speed between the nodes is faster 

than the speed of proliferation of the pathogens. The two alternate schemes that can be explored are based on 

epidemiological models and random graphs. In Epidemiological models a central server collates all the information 

about virus detection at different nodes and then superposing this information on a spatial map the model predicates 

the rate and direction of the virus propagation. There are two problems with such a scheme, that is, speed and 

vulnerability of the central servers to attacks. Analysis and communication may take so long that the network may be 

overwhelmed. In the approach based on the theory of random graphs, messages can be propagated via hopping 

through chains of intermediaries.  

A variant of the classical epidemiological model is a distributed model whereby a hierarchy of epidemiological 

servers exist; the server at the lowest level makes decision about the immediate neighborhood and sends the 

information up to the next level so that the information can be processed at higher levels for making global decisions 

such as shutting down, or throttling back, key routers and servers. This approach, though scalable and less 

vulnerable, requires significant overhead in managing flow of information. This approach is not investigated in this 

paper. 

III. LITERATURE REVIEW 

Work on understanding the basic concepts of the Immune System has proceeded for several years and primary 

concepts related to the function of the human immune system are well understood. However, work on developing 
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Artificial Immune Systems is relatively new and many applications based on immunological concepts are emerging. 

Conceptual models of the immune system cover a broad spectrum of disciplines. So, for improved clarity, the extant 

literature is presented as four relevant streams of work: Biological Immune Systems, Artificial Immune Systems, 

Epidemiological Models, and Information Complexity. 

Conceptual understanding of immune systems is based on several theories discussed in the literature including 

immune memory, clonal selection principle, idiotypic network theory, reinforcement leaning, and affinity 

maturation. Burnet [3] developed the clonal selection principle that states that each clone carries immunologically 

reactive sites corresponding to one or more antigens. Jerne [37] presented the idiotypic network theory that normal 

immune systems react against their own components to regulate themselves. Perelson and Oster [47] introduced the 

concept of general shape space that explains how a finite number of antibodies can detect an infinite number of 

antigens by clonal selection. Several methods have been proposed for analytic representation of the signatures of the 

pathogens that are matched in the immune system, such as bit-strings by Farmer [19], and De Boer and Perelson 

[16], Euclidean parameter spaces by Segal and Perelson [48], and polyhedron models by Weinand, [52]. 

Popularity of artificial immune systems is evident from the acceleration of research in its modeling over the last 

few years. Several applications based on immune systems outside the area of biological modeling have emerged 

recently, most notably computer security, which is a primary focus in this paper. Kephart [38][40] was perhaps the 

first to introduce the concept of using biologically inspired defenses against computer viruses and the use of immune 

systems for computer security. Forrest [23] also proposes the use of immune System concepts for design of computer 

security systems. Forrest et al. [21] provide an elaborate description of principles of immune systems that are 

applicable to computer security and present three alternate matching schemes: hamming distance, edit distance, and 

r-contiguous bits. They argue that the primary premise behind a computer immune system should be an ability to 

distinguish between self and non-self.  They present a signature scheme where a data triple consisting of source IP-

address, destination IP-address and the destination port number are used to identify self-packets from non-self 

packets. Hofmeyer [28][27] presents a detailed architecture of a computer immune system. He analytically compares 

different schemes for the detection of pathogens, such as hamming distance and specificity. There are several other 

works in the literature on the use of immune Systems for network security including those by Murray [45], Kim and 

Bentley [41], and Skormin [49]. 
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Immune Systems are fairly complex with some unique schemes and are thus a rich source of concepts, which are 

applicable to a variety of problems. Hunt presents applications of computer immune systems in fraud detection and 

data mining. Ishida [32] presents an immune system for active noise control. Tarakanov and Dasgupta [51] present 

the architecture for a chip based on immunological paradigms. Tarakanov and Skormin [50] present a pattern 

recognition application using immuno-computing. Ishiguro et al. [33] present an application of immune systems in 

robotics for control applications. Dhasslear et al. [17] have used immune modeling for change detection algorithms.  

Hajela [26] presents applications of Immune Systems in Optimization.  

Fred Cohen coined the word computer virus for self-replicating programs that spread on the network. Cohen and 

Murray suggest a link between computer viruses and biological epidemiology. Kephart [39] conducted the first 

comprehensive study of use of Epidemiology for studying computer viruses. They use a graph model for representing 

the network and study the virus propagation on the nodes of a graph using a differential equation based model. They 

deduct that no virus detection system is perfect, however, if the rate of detection is higher than the rate of 

propagation of viruses among nodes, the spread of viruses can be controlled. Williamson and Levine present a new 

epidemiological system dynamics model for virus propagation among network nodes. Their model consists of four 

states: susceptible, infected, detected, and removed; they provide a tool to perform simulations of virus propagation 

in networks. Some of the earlier work on epidemiology assumes homogeneity of the network. Moore [44] presents a 

model for disease propagation in a small-world graph. Barabási et al. [2] have shown that large networks are non-

homogenous where high connectivity nodes are significant. Network topology can thus influence the spread of 

viruses. This research plans to address this issue by incorporating different network topologies in the model. 

The complexity-based analysis technique presented in this paper takes into account the innovation of an attacker 

attempting to compromise an information system. A metric for innovation is not new, William of Occam suggested a 

technique 700 years ago [42]. The salient point of Occam�s Razor and complexity-based vulnerability analysis is that 

the better one understands a phenomenon, the more concisely the phenomenon can be described. This is the essence 

of the goal of science: develop theories that require a minimal amount of information to be fully described. Ideally, 

all the knowledge required to describe a phenomenon can be algorithmically contained in formulae, and formulae 

that are larger than necessary lack a full understanding of the phenomenon. The ability of an attacker to understand, 

and thus successfully innovate a new attack against a system component, is directly related to the size of the minimal 
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description of that component. It is in this sense that the proposed complexity-based signature detection algorithm 

has more �meaning� than simply detecting whether bits happen to match in various locations. 

Consider an information system attacker as a scientist trying to learn more about his environment, that is, the 

target system. Parasitic computing [1] is a literal example of a scientist studying the operation of a communication 

network and utilizing its design to his advantage in an unintended manner. The attacker as scientist generates 

hypotheses and theorems. Theorems are the attacker�s attempts to increase understanding of a system by assigning a 

cause to an event, rather than assuming all events are randomly generated. If theorem x, described in bits, is of length 

l(x), then a theorem of length l(m), where l(m) is much less than l(x), is not only much more compact, but also 

( ) ( )2l x l m−
times more likely to be the actual cause than pure chance [42]. Thus, the more compactly a theorem can be 

stated, the more likely the attacker is to be able to determine the true underlying cause described by the theorem. 

Minimum description methods seek to estimate complexity by determining the smallest size to which a description 

can be compacted. Complex descriptions, containing a larger number of �random� interactions and lacking any form 

of repeatable patterns, cannot be described as compactly as simple descriptions. Kolmogorov Complexity is a 

complexity measure that falls within this category.  

Thus, Kolmogorov Complexity is a measure of the descriptive complexity contained in an object. It refers to the 

minimum length of a program such that a universal computer can generate a specific sequence. A comprehensive 

introduction to Kolmogorov Complexity is contained in [43]. Kolmogorov Complexity is related to Shannon 

Entropy in that the expected value of K(x) for a random sequence is approximately the entropy of the source 

distribution for the process generating the sequence. However, Kolmogorov Complexity differs from entropy in that 

it relates to the specific string being considered rather than the source distribution. 

A significant difficulty with Kolmogorov Complexity is that it is not, in general, computable. Any program that 

produces a given string is an upper bound on the Kolmogorov Complexity for this string, but one cannot compute 

the lower bound. Yet, as will be discussed later in this section, estimates have shown to be useful in providing 

information assurance and intrusion detection.  

Kolmogorov Complexity is described in Equation 1, where ϕ  represents a universal computer, p represents a 

program and x represents a string. Universal computers can be equated through programs of constant length, thus a 

mapping can be made between universal computers of different types. The string x may be either data or the 
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description of a process in an actual system. Unless otherwise specified, consider x to be the program for a Turing 

Machine described in Equation 1. 

Kolmogorov Complexity has provided a useful framework from which to study objective metrics and 

methodologies for achieving information assurance. Recent results have shown promise for complexity estimators to 

detect FTP exploits and DDoS attacks [6][7][5]. Complexity is attractive as a metric for information assurance 

because it is an objective means of characterizing and modeling data and information processes for the purpose of 

benchmarking normal behavior, identifying weaknesses, and detecting deviations and anomalies. 

IV. ARCHITECTURE OF THE IMMUNE AND EPIDEMIOLOGICAL MODEL BASED SECURITY SYSTEM 

This section describes the architecture of the immune system and the concept of collective defense. Section A 

describes the distributed security architecture based on the immune and epidemiology paradigms. Section B presents 

an analytic model of the proposed architecture.  

A. Two-level Model for Virus Detection 

In networked computer systems, network layer switches route information packets to nodes in the network. 

Traditionally, most virus detection software has been developed around single machines in the network, thus placing 

the entire burden of detection on individual machines.  Conceptually, there is no reason why the computational 

burden of virus detection should not be distributed among the machines in the network as well as network 

components such as routers and switches. In fact, distributing the burden can enhance the resilience of networks to 

attacks. However, it demands an innovative model that is defensible on economic as well as technical grounds, 

because this model appears to differ from the old-fashioned network philosophy of keeping network components 

(intermediate nodes) as simple as possible while forcing complexity onto the edges (hosts) of the network. An 

innovative model is proposed by drawing analogies from the human immune system and epidemiology. This model�s 

architecture has been designed to help answer the fundamental question of how much additional processing and 

capability should be added within the network as opposed to the edges of the network, particularly when additional 

capability is required to keep the network functioning when under attack.  The model is described in two steps. 

Section A.1 describes the component on a single node while section A.2 describes the component distributed on the 

network. 
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1) The Immune System Component 

When information packets arrive at switches or hosts, point of entry presents the first opportunity to inspect them 

for the presence of viruses. Since the packets have not been assembled into files at this stage, if we consider groups 

(or sequences) of packets, we can at best inspect them for existence of sectors of virus signatures. We will refer to 

this inspection as point-of-entry inspection. Because of the sheer traffic density and the size of the virus signature 

database, it becomes necessary to sample groups of packets for inspection at this first stage. That being the case, 

there is a possibility that viruses can escape detection at this inspection, either because the virus signatures may not 

be comprehensive, the virus signature straddles two contiguous sequences, or because the sequence containing the 

virus signature is not sampled. We call this the �false negatives� problem. 

If the packets containing viruses escape detection during the above inspection, they are assembled into files that 

are carriers of the virus. When such files are executed, viruses attached to the carriers multiply and propagate. 

Therefore, there is a necessity to inspect all files for the existence of viruses. This second stage of inspection, which 

we will call carrier-level inspection, involves matching of the entire virus signature with the files either fully or by 

using indices of specificity as done in Forrest [22] Hofmeyer [27]. The mode of inspection (full inspection or 

sampling), and the frequency of inspection (real-time or periodic on files that have been changed) are decision 

parameters that can be chosen by network administrators. 

Inspections are based on matching of virus signatures from a signatures database. At the point-of-entry inspection, 

matching is based on comparison of sectors of virus signatures with the group of packets sampled. Carrier-level 

inspections are based on comparison of the entire virus signature string with files stored on the node. In addition, 

because of the polymorphic and mutating nature of many viruses, it is necessary to compute the mutants of existing 

signatures in the database to be used at both levels of inspection. The Kolmogorov Complexity-based approach 

would quantify polymorphic distance from a given signature and thus would not explicitly require a complete set of 

polymorphic detectors. 

At both levels of inspection, the number of detectors required will be very large if entire signatures or their sectors 

are used in matching. Therefore, as suggested by Forrest [23] we plan to implement matching based on a chosen 

specificity index, i.e., for a specificity index r, a match is said to exist if any r-contiguous bits in the signature (or its 

sub string) match with any r-contiguous bits on the sequence being inspected.  
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All of the above discussion applies to individual machines or components in the network. Each such entity is 

assumed to maintain its own signature database as well as immune system. The framework described above therefore 

provides reasonable assurance on the detection of viruses, but does not provide assurance on the prevention of the 

spread of such viruses. It is for the latter that we look to a metaphor from epidemiology. In addition, the previously 

discussed paradigm also introduces a large computational burden on the nodes. The epidemiological component of 

the model reduces this computational burden on individual network nodes as described in section A.2. 

2) The Epidemiology Component 

When a virus is detected by an individual entity on the network, it is important that information on such detections 

be maintained in a database so that their spread can be monitored. Such monitoring can be implemented either in a 

centralized fashion (as in many public health systems for the monitoring of the spread of diseases) or in a distributed 

fashion where each node in the network maintains an epidemiological database and monitors the spread of viruses in 

its neighborhood. Since any centralized monitoring facility is subject to denial-of-service attacks, in the model 

reported here, we introduce a distributed database of virus signatures and an epidemiological component to monitor 

the spread of viruses in the network neighborhood.  

In the distributed model that we propose, when a node in the network detects a virus, the signature of such a virus 

is broadcast to all nodes in the immediate network neighborhood. Each node updates its own signatures database and 

performs statistical analysis of the virus detection frequencies. The results of such analysis, in conjunction with 

thresholds for responses can provide a resilient decision support system for dealing with viruses. The immune 

system and the epidemiological component form essential components of the network security infrastructure. The 

selection of detectors is based on stochastic models and each node ignores a large portion of the detector space. 

Collectively searching for viruses and sharing information allows a much larger search space to be covered by the 

immune system.  

The average computational burden on each node would be minimized if each node were to compute a non-

overlapping subset of non-self (malicious) space. In other words, the entire 'space' of non-self is partitioned into 

subsets, and each node computes a mutually exclusive part of the non-self detector set, thus distributing detector 

generation. It is only if/when a virus is detected by a corresponding detector of the non-self detector space (at a node 

responsible for that virus set) that the relevant detector set is broadcast to other vulnerable nodes in the network. In 

this case both processing and memory overhead can be reduced since each node handles only a subset of the entire 
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non-self space at the cost of quickly moving non-self information to the correct location when viruses are imminent. 

However, the initial partitioning of non-self spatially across the network becomes a critical design issue. There is 

management overhead in initiating and maintaining such a partitioning.  

If a virus is polymorphic and Kolmogorov complexity proves to be sufficient in matching an evolutionary chain of 

such viruses, then Kolmogorov Complexity would be a key component in properly locating the correct set of 

detectors in proper locations. A self-organized system in which detectors would migrate towards regions where 

discrepant complexity patterns are observed could address the maintenance issues associated with maintenance of 

detectors. 

An obvious problem with the approach is the amount of damage that would be sustained, in the worse case, if a 

virus entered and spread throughout the network before reaching the spatial location in which the corresponding 

detectors were generated. In this case, one would almost wish to promote the spread of the virus in order to 

guarantee that the portion of the network with the corresponding detector set is reached quickly. 

A subset of the space, however, does not necessarily have to be exclusive to a node. It has been shown in the 

literature that in random graphs the average degree of connectivity of each node is very small. Recent studies have 

also indicated that many networks, including the world wide web follow a scale-free degree distribution in which the 

fraction of sites having k connections follows a power law: P (k) = ck. The average distance between sites in scale-

free networks is much smaller than that in regular random networks. If instead of a mutually exclusive set of 

detectors at each node, an overlapping set of detectors was created across network nodes, even with a modest 

connectivity of the graph, the virus should be able to reach a node with the specific detector quickly. An 

optimization model can be created to partition and replicate the non-self space so as to have an acceptable response 

rate. According to Kephart and White [39], as long as the rate of detection and cleanup is higher than the infection 

rate, the system will not get overwhelmed. 

The alternative to the approach described above is to let each node randomly select detectors from the detector set. 

This approach has low maintenance overhead however, it may leave a significant portion of the search space 

unexplored based on the number of nodes on the network, the specificity used in detection and the sampling rate at 

each node. The paper explores the feasibility of using each of these approaches via an analytic model.  
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B. Analytical model 

An analytic model was developed to investigate the behavior of the immune system in response to entry of a 

pathogen into the network. The model considers the entry and propagation of a single pathogen in the network. Since 

the arrival or generation of any virus strain is independent of any other virus strain in the network, the model can be 

extrapolated for multiple viruses entering the network without loss of generality. A detector, 
siD ,

, is defined with 

identifier i  and specificity s . The symbol )(, virusD SI
 represents the relation of a specific detector I  to a specific 

signature, virus . A single detector can match many sequences, however, this notation refers to relationships 

between a specific detector and a specific potential virus signature, such as evolving a detector to become more 

specific to a virus signature. A detector match to a specific virus is represented by ( )( ) truevirusDT si ==,
. The 

model assumes that self-space is completely known, however, holes may exist in the non-self space. The initial set of 

detectors covers as much of nonself as possible with low specificity, that is,
NonselfD

SsNi
si ≈

≤≤
U

,
,

, where S  is a 

given specificity and N  is the number of detectors required to cover nonself at specificity S . The probability of a 

hole ( hP ) is greater at lower specificity. Thus, we can only approximate coverage of nonself space with low 

specificity. Holes are created when detectors that match self-signatures are eliminated from the non-self detector set 

during clonal deletion. However, by using low specificity coverage of nonself is achieved more quickly and with 

fewer detectors. The non-self detectors are distributed across the network such that multiple detectors of the same 

type can exist on the network, however, any node on the network can have only one copy of a specific detector. 

Multiple copies of detectors ( N...1 ) are distributed on nodes throughout the network, thus for any given node n , 

I
i

siD φ=,
, that is, a node may contain multiple low specificity detectors only if they are of different types. An 

optimization algorithm is used to determine the initial distribution as well as redistribution of detectors in the 

network. The goal of the optimization is to minimize the damage potential of pathogens by redistributing the 

detectors on the network in response to changes in network configuration, network latency and perceived threats. 

There are two kinds of detectors that cover the non-self space: low-specificity and high specificity. The low 

specificity detectors, the original N...1  detectors, cover the bulk of non-self space and high specificity detectors 

correspond to existing known viruses. The distribution of low specificity detectors is coordinated centrally, however 
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each network node maintains its own set of high specificity detectors. The purpose of the high-specificity detectors 

is to present a targeted response to known pathogens and to patch the holes that arise in the detector space. Creation 

and distribution of high specificity detectors is computationally expensive since a relatively large number of 

detectors are required as compared to low specificity detectors to cover the same detector space. Lower the 

specificity of detectors the less detectors are required however the lower the specificity greater the chances of holes 

in the detector space requiring more specific detectors. Thus the specificity of the detectors needs to be optimized to 

minimize the detector count. 

The immune system engages in a process called affinity maturation that results in the creation of specific detectors 

in response to detection of pathogens by low specificity detectors. When a non-self packet is detected on a node the 

immune system rapidly generates copies of the detector that matched it by cloning the detector and using a high 

mutation rate to generate diversity in the population. The generated clones themselves undergo the process of 

cloning and mutation to generate more detectors. The rate of cloning is proportional to the fitness of the detectors 

and is defined as the detector specificity to the observed pathogen. The fitness function ( )( pathogenf ) assigns 

higher fitness to detectors such that specificity for a suspected pathogen is increased, such that, 

( ) ( ){ })()(,1,1, pathogenDSelfDD SMinsNisNisi <+=+= ∧≠=  that is, a new detector is created with identifier 

1+= Ni , and specificity with regard to the suspected pathogen is lower, )(SMins <  where S  is the set of 

specificity from detectors such that ( )( ) truepathogenDT si ==,
. The low specificity detectors ( N...1 ) remain 

resident as originally distributed upon each node. The higher specificity detectors ( SsNiD >> , ) are created in 

response to the appearance of a virus and migrate from node to node. Evolution towards better fitness as defined 

by )( pathogenf  is induced by two mechanisms: (1) at least one of the low specificity nonself detectors is 

activated (2) indication of damage. A damage model provides a framework in which the occurrence of damage to 

node n  can be assessed based upon for example, excessive load, excessive, rapidly escalating connectivity, loss of 

files, etc� Damage will be defined in this paper as an abstract value td , which represents the damage at a given 

time such that Θ>td  indicates that damage has exceeded a threshold, Θ . The trigger is defined by a Boolean 

function ( )( )( ) ( )Θ>∨=== tsN dtruepathogenDTTrigger ),...1(
. Once triggered by damage detection, an 
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evolutionary search occurs to find a specificity that more tightly matches the pathogen based upon either the low 

specificity detector, that is, detector identifiers N...1 , or if the pathogen lies in a hole in the detector space fill holes 

that overlap with the most recent changes to self. Any mutated clones that are not exclusive of self are destroyed. The 

fittest clone is then distributed to the other nodes of the network to assist in the identification and destruction of the 

pathogen. In the scenario when the signature of the packet is neither identified as self nor as non-self co-stimulation 

from multiple nodes is used to designate a packet as benign or malicious. Co-stimulation can be based on damage 

detection on the network as well as on the proximity of the signature to specific detectors on multiple network 

nodes.   

The stochastic model for the immune system is shown in Figure 1. It shows the behavior of a node in response to 

insertion of a specific pathogen into the network. Each node can have one of three states, that is, susceptible (S), 

immune (I) or infected (D). A node is in immune state if it contains a detector for a specific pathogen. It is in 

susceptible state if it neither contains the pathogen nor the detector and it is in infected state if it contains the 

pathogen but not the detector. The possible state transitions in the model are listed below and the initial state vector 

is presented along with the specific plots of the simulation.  

1. The node can transition from susceptible to immune if it receives a detector for a specific pathogen either 

during repartitioning of the detector space or when a pathogen is identified at another node and a specific 

detector for that pathogen is distributed to the entire network.  

2. The node can transition from susceptible to infected if it receives the pathogen from some other node or 

from outside the network. 

3. The node can transition from infected to immune if it receives a detector for the pathogen.  

4. The node cannot transition from infected to susceptible since it stays infected until it receives a detector and 

then it becomes immune 

5. The node can transition from immune to susceptible if a low specificity detector is removed from a node 

during optimization of the detector space or if the virus mutates 

6. The node can go from immune to infected if the virus mutates and the specific detector fails to detect it.  
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We model the network as a discrete-time stochastic process to determine how the state of the system changes at 

discrete points in time. A generic discrete-time stochastic model is first presented and then a specific model 

representing the immune network is presented. Let S denote the states of a node.  

S = [S1, S2, �, Sn] 

Where n is the total number of states, Let st be the probability distribution of the states at time t. 

st = [s0, s1, �, sn] such that  ∑
=

=
=

nj

j js
1

1  and 10 ≤≤ is . 

Let T be the transition matrix where tij is the probability of transition from state i to state j such that stT = st+1 
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Probability that a sequence of states, X1, X2, �, Xk at time 1, 2, � k is then given by  
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2
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The probabilities of transition of an individual node depends on the network topology parameters such as the node 

connectivity and the distribution of detectors on the network, as well as the rate of execution of programs on a 

machine. Let us consider the case where no detectors are present on the network. From the state transition diagram in 

Figure 1,  S=[s, i, d].  
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N

n
ct i

di ××= β  

sisdss ttt −−=1  

tis =f, tid = 0, tii = 1- f 

tds = 0, tdd = 1 - tdi 

 

From Figure 17, we can estimate the rate of detector generation for a node. From Figure 12 and Figure 16, we know 

the probability of match of a detector for a given specificity and sequence length. These can be used to help 

determine β in the stochastic model. φ in the stochastic model represents the potential for a polymorphic virus to 

change its signature and thus evade detection. The steep slopes in Figure 12 and Figure 16 indicate that the rate of 

change of match probability (
tydSpecifici

dPm ) is large and thus very sensitive to specificity. A small change in signature 

causes a drastic change in the detector�s ability to match the virus, thus increasing the number of detectors required 

and perhaps impacting φ. Several questions can be answered using the stochastic model. The model uses as 

assessment metric of damage as 
N

n  nodes infected and bases the time to infect on the hop count.  

1) Base Case: For a given network topology with no detectors, how long does it take for the network to 

become overwhelmed? 

2) What is the impact of the network topology on propagation of viruses when such an immune system is 

resident on a network? 

3) Assuming detectors are spatially partitioned throughout the network, that is, no node contains more than 

one type of detector, what is the maximum rate of propagation of the virus that the system can sustain 

(maintains network damage below a given threshold) for the given topology? 

4) For a given network topology and virus propagation rate, what would be a feasible arrangement of detectors 

on each node, allowing overlapping set of detectors on different nodes, to prevent the system from being 

overwhelmed (maintain network damage below a given threshold)? 

5) What is the probability of total network failure, i.e. 
N

N  nodes infected, given the virus propagation rates and 

detector locations from (4) above? 
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6) What is the optimum distribution of detectors based upon network topology and a given specificity? 

7) What is the optimum specificity and distribution of detectors in a network of given topology?  

 
The research addresses questions 1 & 2 described above with questions 3-7 deferred for future work. In the 

simulations presented here the stochastic model is evaluated for the case of 100 nodes. Stochastic parameter values 

are shown at the top of each graph. In Figure 2 there is a relatively high rate of detector release (0.8) into the 

network. The plots show that number of immune nodes grows rapidly. In Figure 3, detector release rate drops to 0.4 

resulting in a slower and lower immune rate among the nodes. In Figure 4 the detector release rate has further 

dropped to 0.2 and the virus infection rate climbs up to 0.8. This results in a dangerous situation in which the 

number of immune nodes gradually decreases while the number of infected nodes increases. The generation and 

release rate of detectors is critical, given any rate of virus propagation. Figure 17 later in the paper shows the rate of 

detector generation as a function of size of signature. Even in the best case when the self is small and the ability to 

generate nonself is small the rate of detector generation is very low showing that a system of realistic size would take 

an unreasonable long time to cover all of nonself. (assuming random detector generation and deleting detectors that 

match self). 

 The impact of network connectivity on the stochastic model can be seen in the network topologies shown in 

Figure 5. The stochastic model was applied to these topologies. In Figure 6, the stochastic model is applied to 

network Figure 5.a that has relatively low connectivity, the probability of connection between any two nodes is 0.3 

and the network diameter is 4. The stochastic model parameters in the figures in this paper are set to model a faster 

detector generation and propagation rate than virus propagation rate, thus the detectors take advantage of network 

connectivity spread faster than the virus. Greater network connectivity increases the rate of spread of both detectors 

and viruses, with a more rapid spread of detectors, causing the number of immune nodes to increase at a more rapid 

rate than in a low connectivity network. Notice that with this low level of connectivity the point where the 

probabilities of susceptible and immune cross one another is beyond the right side of the visible graph. In Figure 7, 

the stochastic model is applied to the network in Figure 5.b, which is slightly more connected, with a probability of 

connection is 0.5 and network diameter is 3. Here the crossover point from susceptible to immune occurs around 

transition 28. Finally, in Figure 8, the stochastic model is applied to the network shown in Figure 5.c, which is more 

fully connected, with a connection probability between any two nodes of 0.8 and a diameter of 2. Here the crossover 
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point from susceptible to immune occurs even earlier, near transition 17. The work on modeling of the virus spread 

and detector propagation is preliminary. Figure 9 shows the results from an immune system simulation, which shows 

that specificity is that the detection rate is strongly dependent on the specificity. At high specificity it is not possible 

to have a large enough sampling rate to efficiently run the immune system. The authors intend to use the existing 

results and extend their modeling further to answer some of the remaining questions presented above.   

V. ANALYSIS OF SIGNATURE MATCHING TECHNIQUES 

A critical objective of a signature-based virus detection system is to generate and match detectors with potentially 

transient software components, e.g. packets, drivers, patches, etc� such that the frequency of matches to legitimate 

system components is minimized (preferably zero) while the matching frequency of illegal components is maximized 

(preferably all). There is considerable overhead and time required to generate all detectors that do not match a given 

system, referred to as �self�. However, design tradeoffs must be made among several dimensions when optimizing 

the efficiency of matching detectors with potentially illegal component sequences, or signatures. Contiguous element 

matching, number of total matches, and a novel Kolmogorov Complexity-based matching technique are compared 

and contrasted in terms of their matching efficacy this paper. 

Among many parameters affecting detector overhead are sequence length and generation time of each detector; 

some matching techniques attempt to minimize this overhead by allowing one signature to match many possible 

nonself-sequences. This is accomplished by allowing wildcard positions in the detector that can match any element. 

In a similar manner, a �degree� of match can be specified by such concepts as contiguous element matching or 

number of total matches. Allowing one detector to match more than one component in a system, while reducing 

overhead in generating detectors by allowing fewer detectors to �cover� a larger space, introduces another problem, 

namely, holes. Holes are virus signatures that cannot be matched by detectors because legitimate system components 

would be matched by the same detector. In this paper we will refer to matching techniques that allow detectors to 

match many potential components as �loose� matching techniques. Those techniques that allow only a one-to-one or 

one-to-few detector�to-sequence matches will be referred to as  �tight�. Tightness and looseness of matching are one 

of the tradeoffs involved in determining optimal detector performance. Three matching techniques are analyzed in 

this paper, namely, contiguous element matching, number of total matches, and a degree of match based upon 

estimates of Kolmogorov Complexity. The term �complexity� will be used in the remainder of this paper in 
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reference to estimates of Kolmogorov Complexity. A comparison and contrast between specificity and Kolmogorov 

Complexity is illustrated in Figure 10. Specificity is illustrated on the left side if the figure. Detectors with a small or 

tight specificity can exactly cover the nonself sequences illustrated in the figure. However, large or loose specificity 

requires fewer detectors but can create holes. A Kolmogorov Complexity-based distance metric illustrated on the 

right side of Figure 10. The complexity-based metric examines differences in complexity between self and nonself 

sequences as well as measuring similarity among nonself sequences. The symbols used in the analysis are shown in 

Table 2. The technique of generating all potential detectors and eliminating those that match legal components is 

assumed. 

A. Contiguous Matches 

Contiguous element matching returns the length of the longest set of contiguously matching elements between a 

detector and a target sequence as illustrated in Figure 13. The detector is the middle sequence and the target strings 

above and below the detector. The detector and target sequence are the same length. The target sequence along the 

top in non-sliding, in other words, the sequences are lined along side one another and the longest contiguous set of 

matching elements is counted. In Figure 13, the longest set of contiguously matching elements is has three elements 

as shown within the leftmost dashed box.  Equation 3, derived in [46], shows the equation used to obtain the 

probability of match assuming that signatures are randomly generated. The probability of match assumes a randomly 

generated string with m possibilities for each element. Each position can match with probability 
m

1
 and does not 

match with probability 
m

m )1( −
. There is an 

rm−
 chance that r contiguous elements will match and there are rl −  

chances for a run of length r in a sequence of length l. Each run is preceded by a mismatch with probability 

m

m
m r )1( −−

. A plot of the RePast simulation and contiguous element matching results are shown in Figure 12. 

Another form of contiguous element matching allows for one sequence to slide alongside another while searching for 

the longest contiguous sequence of matching elements. This is illustrated in the target sequence at the bottom of 

Figure 13. Each time the target sequence is shifted one character at a time to the right, the longest contiguous match 

is determined. After the target sequence has been shifted completely across the detector, the longest set of longest 
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contiguous matches, in this case four as shown in the right-most dashed box in Figure 13, is defined as the sliding 

specificity. 

B. Total Matches 

The number of total matches is quantified by simply counting the total number of elements that match between a 

detector and target sequence, regardless of whether the matches are contiguous. This is illustrated in Figure 14. The 

dashed boxes show the matches. The equation for total match frequency can be derived most simply from the 

previous derivation (for contiguous matches) by noting that the probabilities of match 







m

1
 and non-match 







 −

m

m )1(
 are simply summed as a binomial coefficient and multiplied by the opportunity for the signature to slide 

alongside the sequence under test as shown in Equation 4.  

A sliding total match count allows one sequence to slide alongside another, while the largest set of matching 

elements is determined after each right shift of the target string. In both the contiguous and total number of matching 

elements techniques, allowing the target sequence to slide allows for more opportunities for matches to occur. 

C. Kolmogorov Complexity for �Meaningful� Change Detection 

A Kolmogorov Complexity-based approach to signature matching is motivated by the fact that there is little 

�meaning� behind quantitative measures of bit-matching techniques, such as contiguous element matching, and the 

number of total matches. A brief review of Kolmogorov Complexity recently applied to communications can be 

found in areas such as Active Networks [9], Network Management [4], and Information Assurance [7] [5]. One of the 

most complete references on the subject can be found in [43] and an introductory discussion of complexity and 

meaning can be found in [42].  

Complexity is defined as the smallest program that can generate the natural number that describes the binary 

sequence x. It is the smallest program, or algorithm, that describes sequence x. This definition states that a bit-string, 

x, that requires a larger smallest algorithm to describe the bit-string is quantifiably more complex. Consider a very 

basic definition of complexity, Cf(x)= min{l(p): f(p)=n(x)}, where p is a Turing Program, l(p) is the length of 

program p, and n(x) comes from [43] in which an unambiguous mapping is made from binary values to positive 
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integers. Complexity is thus defined as the smallest program that can generate the natural number that describes the 

binary sequence x.  

In general, a wide range of programs, or algorithmic descriptions can generate a bit-string. Often, it is the case that 

the size of a program, or with regard to the definition above�the algorithmic description, can be traded-off for speed. 

Thus, we need to be careful to distinguish the above definition of complexity from space and time complexity. From 

the standpoint of bandwidth, we desire small size, namely, the complexity, which must be approximately equal to, or 

smaller than, the static data whose complexity is being computed. However, from the standpoint of processing speed, 

faster, but possibly larger code may be desired. 

Consider, Cf(x|y)= min{l(p): f(p, y)=n(x)}. In this case, the complexity of x is conditioned upon y. One can think 

of this as meaning that executing program p with input y generates n(x). Conditional complexity is important because 

an active packet can contain both code and data, the proportion of which may vary. Consider p as the code in an 

active packet, y may be a conditional bit-string for determining conditional complexity as static data in the packet, 

and x is the final �piece� of information to be sent, represented as a bit-string. The function (f) is the code within a 

network processor (NodeOS/EE) [9] [10] upon which the packet is executed.  

Note that any protocol (p) carried in the active packet can have its complexity estimated in this manner. Thus, 

complexity as an information assurance measure is already obtained as part of complexity estimation. Complexity 

also plays a role in evolution, and could well play a role in technical advances, namely robust evolutionary or genetic 

programming within a running network for protocol generation and support. With regard to signature matching, one 

can very roughly summarize a Kolmogorov Complexity-based degree of match by the sketch shown in Figure 15; it 

is the length, in bits, of the smallest Universal Turing Machine Program that can convert a sequence under test to a 

given signature. A matching signature that matches a detector would require a program of length zero, while a 

sequence that does not match in any element positions would require a program at least as long as a description of 

the detector itself.  

The technique to estimate Kolmogorov Complexity used in this work is based upon a complexity differential, 

illustrated in Figure 11. Sequences are partitioned into fixed length packets. The sum of the inverse compression 

ratio of the individual packets is compared to the fully concatenated sequence, that is, a single block consisting of the 

entire sequence. A complexity differential is defined as the difference between the cumulative complexities of 

individual packets and the total complexity computed when those packets are concatenated to form a single packet. If 
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packets x1, x2, x3�xn have complexities K(x1), K(x2), K(x3),�, K(xn), then the complexity differential is computed 

as: [K(x1) + K(x2) + K(x3) +�+ K(xn)] � K(x1x2x3�xn),  where K(x1x2x3�xn) is the complexity of the packets 

concatenated together. If packets x1, x2, x3�xn are completely random, K(x1x2x3�xn) will be equal to the sum of the 

individual complexities and the complexity differential will therefore be zero. However, if the packets are highly 

correlated i.e. some pattern emerges in their concatenation, then the concatenated packet can be represented by a 

smaller program and hence its complexity i.e., K(x1x2x3�xn) will be smaller than the cumulative complexity. The 

complexity differential is the estimate used in the experiments in this paper. 

VI. RESULTS BASED ON STRING COMPARISONS  

This section compares and contrasts results regarding the performance of the signature matching techniques 

defined in the previous section. Results from a RePast simulation are compared with analytically derived results from 

a Mathematica immunological package under development as part of this research. To the right of Figure 12, 

analytical and RePast model results are shown for the matching probability as a function of detector length and 

number of contiguous elements required, that is, the specificity. However, it is suggested later in this paper that 

specificity is not as useful a measure of similarity as Kolmogorov Complexity estimates. 

To the left of Figure 12, more detail regarding simulation versus analytical results for one slice of the surface 

shown in the previous figures. The analysis and the simulation match very nicely. The important point of the surfaces 

is that the probability of match drops off precipitously as either sequence length decreases or the number of 

contiguous matches required (specificity) increases. Contiguous matching results in a very brittle matching 

probability. 

A. Total Matches 

The number of total matching elements analytical and simulation results is shown to the left and right respectively 

of Figure 16. Analytical and simulation results appear to match reasonably well. The matching probability, although 

greater than contiguous element matching as expected, again drops off suddenly with decreasing sequence lengths or 

increasing specificity. This implies that both contiguous matching and number of total elements matched provide 

very little control over the degree of matching. Later in this section we consider a complexity-based approach that 

provides a finer control over degree of matching as well as more potential meaning to the degree of match.  
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B. Detector Generation Rate 

The overhead of generating detectors is illustrated in Figure 17. The rate of detector generation is based upon a 

Java RePast implementation in which random detector sequences were generated at a measured expected rate of 

approximately one 4000-element sequence per millisecond. Non-sliding contiguous matches among these sequences 

was measured to have an expected execution time of approximately eight milliseconds. Measured results for the 

other matching technique are shown in Figure 18, namely the complexity estimation techniques based upon Zip 

(Zip), Limpel-Zev (LZ), and Entropy, which will be discussed in the next section. If detectors match the legitimate 

system (self) then they are eliminated, resulting in a zero detector production rate. When detectors do not match self, 

they require the time that it takes to attempt to match all self sequences. Thus, total detector generation time is the 

time to create a random detector sequence plus the expected time to match all self-sequences. It is apparent from 

Figure 17 that detector generation rate drops dramatically with the size of self. Thus sequence-matching time is a 

significant factor in the ability of this type of immune response to react in a timely, or even feasible, manner. In the 

RePast implementation, it is apparent that the differential complexity estimation techniques based upon Entropy and 

Zip are on the same order of performance as simple contiguous and total matching. 

C.  Kolmogorov Complexity 

An experiment designed to compare and contrast complexity estimation versus the previously discussed signature 

matching techniques was comprised of detecting whether there is a correlation between traditional techniques and 

complexity estimation. In order to obtain sequences that are nearly realistic, the Anna Kournikova virus code was 

used as input for our correlation analysis. We began with a sequence containing the entire virus definition, and then 

selected a chunk of characters randomly from the sequence. The chunks were concatenated until a 4000-character 

sequence was assembled. A set of 1000 such virus target sequences was generated. A single randomly generated 

4000-character detector was also generated.  We matched the virus sequences with the detector using all the 

matching techniques described in this paper in order to obtain various forms of specificity, namely: contiguous 

matches, sliding contiguous matches, total matches, sliding total matches, and complexity estimations, namely: 

entropy, Zip, and LZ. We wished to examine what degree of correlation exists among the various forms of specificity 

as well as between specificity and complexity. 
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Table 3 shows statistical correlation results among traditional signature detection techniques for the 4000-character 

sequences. It is apparent that both sliding techniques (highlighted in yellow) show relatively high correlation with 

each other (0.52) while both non-sliding techniques (highlighted in blue) show relatively high correlation (0.56). 

The sliding and non-sliding techniques show relatively low correlation with one another. 

Table 4 shows correlation among the differential complexity estimators (Entropy (H), Zip, and Limpel-Zev (LZ)) 

and the traditional signature matching techniques. In this table there is a relatively high correlation among the Zip 

differential complexity estimator and both sliding techniques. The reason for the higher correlation between 

complexity and sliding techniques is that complexity estimation identifies patterns throughout the entire length of 

the detector and target sequences being matched, rather than searching for one instance of a longest match. 

It is hypothesized that a mutating virus would easily escape detection by traditional matching mechanisms due to 

the brittle matching probability illustrated in the surface plots of Figure 12 and Figure 16. Degree of match would be 

more readily apparent and meaningful using a complexity-based technique. In fact relationships between positions of 

matching bits and evolutionary changes in program code, such as modifications to a virus either by human 

intervention or via automated polymorphic viruses would be missed by current techniques while being measurable 

via complexity-based techniques. 

We further hypothesize that signatures may be eliminated if one can distinguish self from nonself on the bases of 

complexity estimates alone, thus eliminating the need to generate and test large numbers of detectors. This technique 

also removes the burden of memory required to hold and maintain large sets of detectors. The challenge will be to 

determine the discriminatory capability versus overhead of complexity estimation versus traditional matching 

mechanisms. 

VII.  CONCLUSIONS AND SUMMARY 

This paper presents a paradigm for a network security that integrates defenses at the node and the network level. In 

this paradigm, that we term as collective defense, complexity is used a function to integrate the biological paradigms 

of epidemiology and immunology. In this model the burden of security is shared by distributing the detectors among 

network nodes. The detectors can replicate and migrate across the networks based on the concentrations of 

pathogens in different parts of the network.  A stochastic model has been developed to analyze the impact of detector 

versus virus propagation rates in such a system. We have also developed a simulation based on Repast that models 
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this collective defense framework. Some preliminary results show a strong relationship between specificity and 

complexity as well as a correlation between estimates of complexity and various measures of specificity. We've 

hypothesized that complexity estimation may be a better matching mechanism for virus signatures, particularly for 

relating polymorphic viruses because Kolmogorov Complexity estimation attempts to account for model size used to 

classify information and provides a measure of the fitness of an explanation used in classification. The preliminary 

results compare and contrast the efficiency of different virus signature detection schemes. It is hypothesized that 

Information Distance, that is based on Kolmogorov Complexity will provide a reasonable measure of similarity for a 

virus signature. In particular, Information Distance will work significantly better for polymorphic viruses because 

such viruses would be most likely to evade detection and survive by using a small mutation algorithm, namely, one 

that approaches the conditional Kolmogorov Complexity estimate between the original virus string and the new virus 

string.  
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Equation 1: Definition of Kolmogorov Complexity. 

Kϕ x( ) min l p( )
ϕ p( ) x= 
 
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Equation 2:  Conditional Kolmogorov Complexity. 

Kϕ x y( )
min l p( )
ϕ p x,( ) y=

∞ if there is no p such that ϕ p x,( ), y= 
 
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Figure 1: State Transition Diagram 

Table 1: Symbols Used in the Stochastic Model. 

Symbol Explanation 

N Number of Nodes in the Network 

nd Number of dirty nodes (infected) 

ns Number of susceptible nodes (non-infected) 

ni Number of nodes that are immune  

c Average number of connections of each node 

a Probability virus release from infected node 

b Probability of detector release from immune node 

f Rate of transition from Immune back to Susceptible 

 

 
Susceptible 

 

Infected 

 
Immune 
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Figure 2: High Detector Generation/Release Rate. 

 

Figure 3: Lower Detector Generation/Release Rate. 
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Figure 4: Very Low Detector Generation/Release Rate. 

 

(a) 
 

(b) (c) 

Figure 5: Random Graphs (a) Probability of Connection 0.3 Diameter 4 (b) Probability of Connection 0.5 
Diameter 3 (c) Probability of Connection 0.8 Diameter 2. 
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Figure 6: Impact of Large Diameter, Low Connectivity Graph on Stochastic Model. 

 
 

Figure 7: Impact of Medium Diameter Graph on Stochastic Model. 
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Figure 8: Impact of Low Diameter, High Connectivity Graph on Stochastic Model. 

 
 

 

Figure 9: Change of Detection Rate with changes in specificity of match in an immune system simulation  
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Figure 10: Comparing and Contrasting Specificity and Complexity (Information Distance). 

 

Figure 11: Definition of Differential Complexity. 
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Symbol Explanation 

Nr0 Number of initial detector strings (before checking for self-match) 

Nr Number of detector strings after censoring (after removing all self-matches) 

Ns Number of self-strings 

Pm  Probability of match between random strings 

f  Probability of a random string not matching any of 'Ns' self strings 

Pf Probability that 'Nr' detectors fail to detect an intrusion 

s Length of signature sequence 

l Length of sequence to be matched (may be longer than signature sequence) 

r Number of consecutive matches (specificity) 

m Number of potential elements at each sequence position; for binary sequences 

m=2 

)(� xK  Kolmogorov Complexity estimate of sequence x 

Table 2: Symbols Used in the Performance Analysis. 
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Figure 12: Simulated vs. Analytical Contiguous element matching Match Frequency for 52-Character Strings 
of Length 10. 

 

Figure 13: Contiguous Element Matching Returns the Sequence Length of the Longest Number of Contiguous 

Matches. 
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Equation 3: Probability of Match of r Contiguous Elements in a String. 

 

Figure 14: Total Matches Is Maximum Number Of Elements That Match Without The Requirement Of Being 
Contiguously Located. 
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Equation 4: Probability Of Match Of Any Elements In A String Of Sequence Length S And Signature Of 
Length L. 
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Figure 15: Kolmogorov Complexity is the Length of the Shortest Program that Generates the Signature from 
the Sequence. 

 

Figure 16: Analytically Derived Probability of Match versus Total Matches and Sequence Length. 
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Figure 17: Rate of Detector Generation as a Function of Size of Self and Probability of Matching Self. 

 

Figure 18: Expected Matching Time for Techniques Discussed in this Paper. 
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Table 3: Correlation Among Traditional Signature Matching Techniques. 
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Table 4: Correlation of Complexity Differential Estimates Versus Signature Matching Technique Results. 
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